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Potential and challenges of Mini-Grids

• Mini-Grids are a reliable, environmentally friendly option for power supply [2,3]

• However, optimization is necessary:

− Storage is a key component to level production & demand [4,5]

− Storage and PV are often over-dimensioned

− Storage and PV are expensive and have high environmental impacts

• Sustainable Development Goals (SDG) 7: Access to affordable, reliable and clean 
energy for all by 2030

• Sub-Saharan Africa: energy supply is neither clean nor reliable
→mostly based on oil, natural gas (grid) or stand-alone diesel generators 
→ Energy access of 83%/ 67% in rural areas [1]
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Aim: a generic and practic-oriented LCA tool to previously optimize the
design of stand-alone Mini-Grids to minimize its GHG emissions.



Literature 
review

• Design of Mini-Grid

• Common storage systems

• Lifetime of components

Mini-Grid 
components

• Batteries

• Inverters

• Photovoltaic moduls

• Mounting material

• Cables

• Electronics / Controllers

Generic LCA 
model

• Excel file based on GaBi 
LCIA data

• Global warming potential 
(GWP 100)

• Functional unit: 
consumed kilowatt hour
(kWh) 

Approach for the generic LCA model

06.04.2022 4
Introduction Methodology Results Conclusion

Aim: a generic and practic-oriented LCA tool to previously optimize the
design of stand-alone Mini-Grids to minimize its GHG emissions.



System boundaries and life cycle inventory
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Impact category: Global Warming Potential, 100 years (GWP100) in CO2-equivalents (CO2eq.)
Functional unit: 1 kWh electricity consumed
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Approach for the generic LCA model
Lifetime modelling

Free Parameters Dependent Parameters
Main assumptions Lifetime Units over Lifetime
Lifetime of the Mini-Grid 25 Years 1,0

Lifetime of PV Modules 25 Years 1,0

Lifetime of Copper Cables 25 Years 1,0

Lifetime of Aluminium Cables 25 Years 1,0
Lifetime of Electronic Components 7 Years 3,6
Lifetime of Li-ion Battery 10 Years 2,5
Lifetime of Lead Acid Battery 6 Years 4,2
Lifetime of Mounting 25 Years 1,0
Lifetime of Solar Charger 7 Years 3,6

Lifetime of Inverter 7 Years 3,6

Assumptions in the Generic LCA model. Own illustration. Image: Microsoft Office 
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Approach for the generic LCA model
Lifetime Bill of Material

Free Parameters Dependent Parameters
BOM Mini-Grid Amount Unit

PV Modules 103,290 W

PV Modules 5,947 kg

Copper Cables 665 kg

Aluminium Cables 7 kg

Electronic Components 36 kg

Li-ion Battery - kg

Lead Acid Battery 5,863 kg

Mounting Material Alu 698 kg

Solar Charger 36 kg

Inverter 619 kg

Sum 13,871 kg

Lifetime BOM Amount Unit

PV Modules 103,290 W

PV Modules 5,947 kg

Copper Cables 665 kg

Aluminium Cables 7 kg

Electronic Components 129 kg

Li-ion Battery - kg

Lead Acid Battery 24,430 kg

Mounting Material Alu 698 kg

Solar Charger 129 kg

Inverter 2,211 kg

Sum 34,215 kg
BOM of the Generic LCA model. Own illustration. Image: Microsoft Office 
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Case study application
The Don Bosco Mini-Grid in Tema, Ghana
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GWP 100 of the Don Bosco Mini-Grid
Life cycle perspective

The GWP is 235 tCO2eq. with more than 86% coming from manufacturing

86,8%

12,9% 0,3%

Manufacturing

 Transport

Recycling
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37,9%

33,7%

17,1%

11,3%

PV Modules

Inverter

Lead Acid
Battery

Rest

86,8%

Share of GWP 100 Life Cycle

Manufacturing

 Transport

Recycling

GWP 100 of the Don Bosco Mini-Grid
Life cycle vs. Manufacturing phase

PV modules and Inverter are the components with the highest impact

Life Cycle Manufacturing

*including cables, electronic components, Li-ion batteries, mounting materials and the solar charger

*
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50,8%

29,9%

11,1%

8,2%

71,4%

17,4%

6,5%
4,8%

Share of Mass

GWP 100 of the Don Bosco Mini-Grid
Share of components in transport emissions

Lead acid batteries have the highest impact on the emissions during transport 

Share of Mass Share of GWP 100 for Transport
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GWP 100 of the Don Bosco Mini-Grid
Comparison with other electricity sources

The DB Mini Grid can save up to 6,800 tCO2e, equiv. to almost 50Mkm by car

Savings of 1,713 tCO2e 
vs. GH national grid

Savings of 6,769 tCO2e 
vs. diesel generator

0 0,25 0,5 0,75 1 1,25 1,5 1,75

DB Mini Grid

GH National Grid

Diesel Generator

kg CO2e/kWh
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• Using the generic GHG-LCA model any Mini-Grid constellation can be 
modelled and optimized to reduce the carbon footprint.

• The case study shows Mini-Grids have the potential to reduce emissions

• The Hot-spot for emissions are PV modules and lead-acid-batteries (during 
transport

• In further research it is important…

− to consider other technologies e.g. lithium-ion batteries.

− to quantify the impact of different consumption scenarios and demand 
side management.

− to use the LCA model in conjunction with a Mini-Grid modelling tools 
such as Homer. 

− To extend the generic model should with additional environmental  
impact categories and economic criteria.

Conclusion and outlook
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